Math 409 Practice Final Exam

This exam has 7 questions, for a total of 100 points.

Please answer each question in the space provided. No aids are permitted.

Question 1. (20 pts)

For each of the following questions, circle the correct answer.

(a)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} =$$

- A. $\frac{3}{2}$
- B. ∞
- C. $-\infty$
- D. 2
- (b) Let f and g be differentiable functions on \mathbb{R} such that $f(0)=5,\ f'(0)=2,$ and g'(5)=3. Then $(g\circ f)'(0)$ is equal to
 - A. 6
 - B. 5
 - C. 3
 - D. 2

(c)
$$\lim_{x \to 0+} (1+2x)^{1/x} =$$

- A. 0
- B. 1
- C. 2
- D. e^2

(d)
$$\lim_{x \to \infty} \frac{\cos x}{x^2} =$$
A. 2
B. 1

$$D \propto$$

D.
$$\infty$$

(e) Which of the following functions is not uniformly continuous on \mathbb{R} ?

A.
$$f(x) = \frac{1}{x^2 + 1}$$

B. $f(x) = 1 + x^2$

B.
$$f(x) = 1 + x$$

C.
$$f(x) = \sin x$$

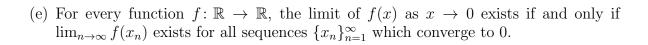
$$D. f(x) = \sin^2(x)$$

Question 2. (24 pts)

In each of the following 8 cases, indicate whether the given statement is true or false. No justification is necessary.

- (a) The image of a continuous function $f: \mathbb{R} \to \mathbb{R}$ is either finite or uncountable.
- (b) If $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then $\{|x_n|\}_{n=1}^{\infty}$ is a Cauchy sequence.
- (c) If f is a bounded function on [0, 1], then there is an $a \in [0, 1]$ such that f(a) = $\sup_{x \in [0,1]} f(x).$

	(4)	The	function	f(~ \		<i>m</i> G	~	;	intorne	hla	0.70	Ω	۲.	1
((a)	1 ne i	function	Ţ(,	x)	=	x s	$\ln x$	1S	integra	anie	on	Įυ,	$^{\circ}$	١.



(f)
$$\{x_n\}_{n=1}^{\infty}$$
 is a sequence that converges and $\{y_n\}_{n=1}^{\infty}$ is a sequence that does not converge, then the sequence $\{x_ny_n\}_{n=1}^{\infty}$ dose not converge.

(g) If
$$f:(0,1)\to\mathbb{R}$$
 is improperly integrable on $(0,1)$, then f^2 is improperly integrable on $(0,1)$.

(h) Every nonempty subset of [0,1] has a supremum.

Question 3. (12 pts)

(a) State the completeness axiom for the real numbers.

(b) State the Mean Value Theorem

(c) State the Intermediate Value Theorem

Question 4. (12 pts)

Compute f' for each of the following functions $f: \mathbb{R} \to \mathbb{R}$.

(a)
$$f(x) = e^{x^2}$$

(b)
$$f(x) = \int_1^x \frac{t}{2 + \cos t} dt$$

(c)
$$f(x) = \int_{1}^{x^2} e^{t^2} dt$$

Question 5. (12 pts)

(a) State what it means for a function $f: \mathbb{R} \to \mathbb{R}$ to be differentiable at a point $a \in \mathbb{R}$.

(b) Let f be a function on \mathbb{R} for which there exists a function g such that f(x) = xg(x) for all $x \in \mathbb{R}$ and g is continuous at 0. Prove that f'(0) exists and determine its value.

Question 6. (10 pts) Define the function $f: [0,2] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 3, & x = 1 \\ 1, & 1 < x \le 2. \end{cases}$$

Prove directly from the definition of integrability that f is integrable on [0,2].

Question 7. (10 pts) Prove that the function $f(x) = \frac{x}{\sqrt{x^6 + 1}}$ is improperly integrable on $(0, \infty)$.